
OCR Statistics 4 Module Revision Sheet

The S4 exam is 1 hour 30 minutes long. You are allowed a graphics calculator.

Before you go into the exam make sure you are fully aware of the contents of the formula booklet
you receive. Also be sure not to panic; it is not uncommon to get stuck on a question (I’ve
been there!). Just continue with what you can do and return at the end to the question(s)
you have found hard. If you have time check all your work, especially the first question you
attempted. . . always an area prone to error.

J .M .S .

Preliminaries

• Your pure maths needs to be far stronger for S4 than in any other Statistics module.

• You must be strong on general binomial expansion from C4.

(1 + x)n = 1 + nx+
n(n− 1)

2
x2 +

n(n− 1)(n− 2)

3!
x3 +

n(n− 1)(n − 2)(n − 3)

2
x4 + · · ·

This is valid only for |x| < 1. This is important for probability/moment generating
functions.

• In particular you must be good at ‘plucking out’ specific coefficients (which may represent

probabilities). For example find the x8 coefficient in x(3+x2)√
4+2x

.

x(3 + x2)√
4 + 2x

= (3x+ x3)(4 + 2x)−
1

2

= (3x+ x3)
(

4(1 +
x

2
)
)− 1

2

=
1

2
(3x+ x3)

(

1 +
x

2

)− 1

2

=
1

2
(3x+ x3)

(

1− x

4
+ · · · − 63

8192
x5 + · · · − 429

262, 144
x7 + . . .

)

So the x8 coefficient will be −1
2(3 × 429

262,144 + 1 × 63
8192 ) = − 3303

524,288 . It helps hugely to be
thinking ahead about what coefficients you are going to need.

• Recall from S3 that E(g(X)) =
∑

g(xi)pi for discrete random variables and E(g(X)) =
∫∞
−∞ g(x)f(x) dx for continuous random variables.

• Recall also that Var(X) ≡ E(X2)− (E(X))2.

Probability

• There are three very useful ways of representing information in probability questions.
Venn diagrams, tree diagrams and two-way tables. You must think hard about which
approach is going to be most helpful in the question you are to answer. Read the whole
question before you start!

• Set theory is very important in probability. Know the following
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– ‘A ∩ B’ is the intersection of the sets A and B. The overlap between the two sets.
“AND”

– ‘A ∪ B’ is the union of the sets A and B. Anything that lies in either A or B (or
both). “OR”

– A′ means ‘not A’. Everything outside A.

– { } (or ∅) denotes the empty set. For example A ∩A′ = { }

• Events A and B are mutually exclusive if both A and B cannot both happen. Represented
by a Venn diagram of non-overlapping circles. Here

P(A ∪B) = P(A) + P(B).

• However in the general case where A and B are not mutually exclusive we have

P(A ∪B) = P(A) + P(B)− P(A ∩B).

This is because we are overcounting the overlap. It is called the addition law.

For three events the addition law becomes A, B and C we have (in general)

P(A∪B ∪C) = P(A) + P(B) + P(C)− P(A∩B)− P(A∩C)− P(B ∩C) + P(A∩B ∩C).

Again this drops out easily from a Venn diagram.

• Events A1, A2, . . . are said to be exhaustive if P(A1 ∪ A2 ∪ . . . ) = 1. In other words the
events A1, A2, . . . contain all the possibilities.

• If A and B are independent events then

P(A ∩B) = P(A)× P(B).

• We read P(A|B) as the probability of A given that B has occured. It is defined

P(A|B) =
P(A ∩B)

P(B)
.

However this formula is not always easy to apply, so Mr Stone’s patented ‘collapsing
universes’ approach from a Venn or tree diagram is often more intuitive.

• Using P(A|B) = P(A∩B)
P(B) and P(B|A) = P(A∩B)

P(A) we discover

P(A ∩B) = P(A)P(B|A) = P(B)P(A|B).

This is called the multiplication law of probability and is incredibly useful in converting
P(A|B) into P(B|A) and vice versa. The multiplication law drops out readily from a tree
diagram.

• Bayes’ Theorem1 states

P(Aj |B) =
P(Aj)P(B|Aj)

P(B)
=

P(Aj)P(B|Aj)
∑

all i P(Ai)P(B|Ai)
.

This looks scary, but drops out from a tree diagram. The formal statement is not required
for S4, but is very important.

1Reverend Thomas Bayes from my home town of Tunbridge Wells. Wrote a document defending Newton’s

calculus hence a rather good bloke.
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Non-Parametric Tests

• All of the hypothesis tests studied in Stats 2 & 3 required knowledge (or at the very least an
assumption) of some kind of underlying distribution for you to carry out the test. However
sometimes you have no knowledge about the underlying population. Statisticians therefore
developed a series of non-parametric tests for situations where you have no knowledge of
the underlying population.

• The sign test is a test about the median (i.e. the point at which you have an equal number
of data points either side). If H0 : median = 10, say, then under H0, whether a random
piece of data lies above or below 10 has probability 1

2 . For n pieces of data we therefore
have a binomial B(n, 12 ). Rather than work out critical values, the best approach is
probably to calculate (under H0) the probability of what you have observed and anything
more extreme. For example test at the 5% level whether the median of the data

1, 1, 2, 3, 6, 7, 8, 9, 9, 9, 10, 10, 11, 13

is 5. Note that there are four pieces of data less than 5.

H0 : The median of the data is 5.

H1 : The median of the data is not 5.

α = 5%. Two tailed test.

Under H0, X ∼ B(14, 12).

P(X 6 4) = 0.0898 > 0.025, so at the 5% level there is insufficient evidence to reject H0

and we conclude that the median of the data is probably 5. [You could have also gone
through the rigmarole of demonstrating that the critical value is 2 (or 12) but my way is
quicker and life’s short.]

• Although there is no example in your textbook I see no reason why they couldn’t ask a
question where you had a large enough sample to require the normal approximation to
B(n, 12). . . don’t forget your continuity correction.

• The sign test is a very crude test because it takes absolutely no account of how far away
the data lies on either side of the median. If you want to take account of the magnitude
of the deviations you need to use. . .

• . . . the Wilcoxon signed-rank test. Here it is assumed that the data is symmetric; therefore
it is a test about both the median or the mean because for symmetric data the median
and mean are the same.

You calculate the deviations from the median/mean, rank the size of the deviations and
then sum the positive ranks to get P and sum the negative ranks to get Q. The test
statistic is T , where T is the smaller of P or Q. For example test at the 5% level whether
the mean of

1.3, 2.1, 7.3, 4.9, 3.2, 1.6, 5.6, 5.7

is 3.

The data sort of looks symmetric, so OK to proceed with Wilcoxon.

H0 : The mean of the data is 3.

H1 : The mean of the data is greater than 3.

α = 5%. One tailed test.
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Data 1.3 2.1 7.3 4.9 3.2 1.6 5.6 5.7

Deviation −1.7 −0.9 +4.3 +1.9 +0.2 −1.4 +2.6 +2.7

Rank 4 2 8 5 1 3 6 7

Signed Rank −4 −2 +8 +5 +1 −3 +6 +7

So P = 27, Q = 9, so Tobs = 9. The lower T is, the worse it is for H0 and the tables give
the largest value at which you would reject H0. Tcrit = 5. 9 > 5, so at the 5% level we
have insufficient evidence to reject H0 and conclude that the mean is probably 3.

• For large samples (i.e. when the tables don’t give the values you want; running out of
values) a normal approximation can be used where

Z =
T + 0.5 − 1

4n(n+ 1)
√

1
24n(n+ 1)(2n + 1)

.

Note that because T is the smaller of P and Q that Z will always be negative (both Zcrit

and Zobs). For example if you had 100 pieces of data and you were testing at the 1% level
whether the mean was some value (against H1 of the mean not being some value) and
P = 2000 and Q = 3050 then T = 2000. So

Zobs =
Tobs + 0.5 − 1

4n(n+ 1)
√

1
24n(n+ 1)(2n + 1)

=
2000 + 0.5− 1

4 × 100 × 101
√

1
24 × 100 × 101× 201

= −1.803

Because it is a two-tailed 1% test we reverse look-up 0.995 to obtain Zcrit = −2.576.
Finally −1.803 > −2.576, so at the 1% level there is insufficient evidence to reject H0 and
conclude that the mean is probably whatever we thought it was under H0.

• The Wilcoxon rank-sum test is the non-parametric equivalent of the two-sample t-test
from S3. It tests whether two different sets of data are drawn from identical populations.
The central idea for the theory is that if X and Y are drawn from identical distributions,
then P (X < Y ) = 1

2 . The tables are then constructed from tedious consideration of all
the possible arrangements of the ranks (called the ‘sampling distribution’).

Given two sets of data, let m be the number of pieces of data from the smaller data set
and n be the number of pieces of data from the larger data set (if they are both the same
size it’s up to you which is m and which n). Then rank all the data and sum the ranks of
the ‘m’ population; call this total Rm. Also calculate m(n+m+1)−Rm and let the test
statistic W be the smaller of Rm and m(n +m + 1) − Rm. The smaller W is, the more
likely we are to reject H0 and the tables give the largest W at which we reject H0.

For example test at the 5% level whether the following are drawn from identical popula-
tions.

A 23 14 42 12 30 40
B 16 21 9 35

H0 : Data drawn from identical distributions.

H1 : Data not drawn from identical distributions.

α = 5%. Two tailed test.
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Data 9 12 14 16 21 23 30 35 40 42

Rank 1 2 3 4 5 6 7 8 9 10

So m = 4, n = 6, Rm = 18, m(n+m+ 1) − Rm = 26, Wobs = 18. Looking at the tables
we see Wcrit = 12, and 18 > 12, so at the 5% level there is insufficient evidence to reject
H0 and we conclude that the data is probably drawn from identical distributions.

• For large samples (i.e. when the tables don’t give the values you want; running out of
values) a normal approximation can be used where

Z =
W + 0.5 − 1

2m(m+ n+ 1)
√

1
12mn(m+ n+ 1)

.

Probability Generating Functions

• In Stats 1 & 2 you met discrete random variables (DRVs) such that each outcome had
a probability attached. Sometimes there were rules which related the probability to the
outcome (binomial, geometric, Poisson). However, in general we had:

x x1 x2 x3 x4 . . .

P(X = x) p1 p2 p3 p4 . . .

Recall that
∑

pi = 1 because the sum of all the probabilities must total 1 and that E(X) =
∑

pixi. Also E(f(X)) =
∑

pif(xi) from Stats 3 and Var(X) = E(X2) − (E(X))2 =
∑

pix
2
i − (

∑

pixi)
2 from Stats 2.

• At some point some bright spark decided to consider the properties of

GX(t) = E(tX) =
∑

pit
xi = p1t

x1 + p2t
x2 + p3t

x3 + p4t
x4 + · · ·

where t is a ‘dummy variable’ unrelated to x. You can see that this will create either a
finite or infinite series. This is called the probability generating function of X. It is a
single function that contains within it all of the (potentially infinite) probabilities of X.

For example given

x −2 −1 0 1 2

P(X = x) 1
6

1
4

1
3

1
8

1
8

the generating function is GX(t) = p1t
x1 + p2t

x2 + p3t
x3 + p4t

x4 + · · · = 1
6t

−2 + 1
4t

−1 +
1
3 + 1

8 t +
1
8 t

2. We can therefore see that if (say) we saw a term 5
24 t

6, then we can see
that P(X = 6) = 5

24 . Note that if you see a constant term then that tells you P(X = 0)
because t0 = 1.

• An important property is that GX(1) = 1 because GX(1) is just the sum of all the
probabilities of X, i.e.

∑

pi.

• Another useful thing to do is consider the derivative G′
X(t) with respect to t;

G′
X(t) =

∑

pixit
xi−1 = p1x1t

x1−1 + p2x2t
x2−1 + p3x3t

x3−1 + · · ·

Again, if we consider G′(1) we obtain

G′(1) =
∑

pixi = p1x1 + p2x2 + p2x2 + p3x3 + · · · = E(X).
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• Variances can also be calculated by

Var(X) = G′′
X(1) +G′

X(1)− (G′
X(1))2.

• Some standard pgfs are given in the formula book:

Distribution B(n, p) Po(λ) Geo(p)

pgf (1− p+ pt)n eλ(t−1) pt
1−(1−p)t

Any good candidate should be able to derive these. . .

• For two independent random variables X and Y (with pgfs GX(t) and GY (t) respectively)
the pgf of X+Y is GX+Y (t) = GX(t)×GY (t). This extends to three or more independent
random variables.

Moment Generating Functions

• You will recall from FP2 that the Maclaurin expansion for ex is

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ · · · .

This is valid for all values of x (and you should know why from your Pure teachings). An
alternative notation used is ex ≡ exp(x).

• The nth moment of a distribution is E(Xn). So the first moment is just E(X). The
second moment is E(X2), which is useful in calculating variances. The zeroth moment is
E(X0) = E(1) = 1.

• The moment generating function (mgf) is defined for
x x1 x2 x3 x4 . . .

P(X = x) p1 p2 p3 p4 . . .

by

MX(t) = E(etX) =
∑

pie
xit = p1e

x1t + p2e
x2t + p3e

x3t + p4e
x4t + · · ·

= p1 + p1x1t+ p1
x21t

2

2!
+ p1

x21t
3

3!
+ · · ·

+ p2 + p2x2t+ p2
x22t

2

2!
+ p2

x22t
3

3!
+ · · ·

+ p3 + p3x3t+ p3
x23t

2

2!
+ p3

x23t
3

3!
+ · · ·

+ p4 + p4x2t+ p4
x24t

2

2!
+ p4

x24t
3

3!
+ · · ·

= (p1 + p2 + p3 + p4 + · · · )
+ (p1x1 + p2x2 + p3x3 + p4x4 + · · · ) t

+
(

p1x
2
1 + p2x

2
2 + p3x

2
3 + p4x

2
4 + · · ·

) t2

2!

+
(

p1x
3
1 + p2x

3
2 + p3x

3
3 + p4x

3
4 + · · ·

) t3

3!
+ · · ·

= E(1) + E(X)t+ E
(

X2
) t2

2!
+ E

(

X3
) t3

3!
+ E

(

X4
) t4

4!
+ · · ·
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So you can see that the constant term of MX(t) should always be E(1) = 1 because it
represents the sum of the probabilities. The coefficient of t will be E(X) and the coefficient

of t2

2! (not just the coefficient of t2) will be E(X2). In general the coefficient of tn

n! will be
E(Xn), that is, the nth moment.

• As with pgfs, differentiating mgfs (with respect to t) is a ‘good thing’. However, instead
of letting t = 1 we let t = 0 (because a0 = 1). So differentiating MX(t) we find:

MX(t) = p1e
x1t + p2e

x2t + p3e
x3t + p4e

x4t + · · ·
M ′

X(t) = p1x1e
x1t + p2x2e

x2t + p3x3e
x3t + p4x4e

x4t + · · ·
M ′

X(0) = p1x1 + p2x2 + p3x3 + p4x4 + · · ·
=

∑

xipi = E(X).

So M ′
X(0) = E(X).

Differentiating again we find:

M ′
X(t) = p1x1e

x1t + p2x2e
x2t + p3x3e

x3t + p4x4e
x4t + · · ·

M ′′
X(t) = p1x

2
1e

x1t + p2x
2
2e

x2t + p3x
2
3e

x3t + p4x
2
4e

x4t + · · ·
M ′′

X(0) = p1x
2
1 + p2x

2
2 + p3x

2
3 + p4x

2
4 + · · ·

=
∑

x2i pi = E(X2).

So using Var(X) = E(X2)− (E(X))2 we find Var(X) = M ′′
X(0) − (M ′

X(0))2.

• Notice that with mgfs there are two ways to obtain the expectation and variance of your
random variable. All things being equal I would choose the differentiation method, but
you must ensure that your mgf is defined for t = 0. Also read the question carefully to
see what they are wanting.

• Moment generating functions can also be defined for continuous random variables:

MX(t) =

∫ ∞

−∞
f(x)etx dx.

As before MX(0) = 1, M ′
X(0) = E(X), M ′′

X(0) = E(X2). Convergence issues can arise
EXAMPLE!!!!!!

• Some standard mgfs are given in the formula book:

Distribution Uniform on [a, b] Exponential N(µ, σ2)

mgf ebt−eat

(b−a)t
λ

λ−t
eµt+

1

2
σ2t2

Any good candidate should be able to derive these too. . .

• As with pgfs, for two independent random variables X and Y (with mgfs GX(t) and GY (t)
respectively) the mgf of X + Y is MX+Y (t) = MX(t) ×MY (t). This extends to three or
more independent random variables.

Estimators

• It is vital to recall here that E(X) = µ and Var(X) = σ2 (by definition).
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• Given a population there may be many parameters that we may wish to know. For
example we might like to know the mean µ, the variance σ2, the median M , the maximum
or minimum, the IQR, etc. In general we shall call this parameter θ.

Usually we will never know θ because we won’t have the whole population. But we will
be able to take a random sample from the population. From this sample we can calculate
a quantity U which we shall use to estimate θ. We call U an estimator of θ.

• U is said to be an unbiased estimator of θ if

E(U) = θ.

i.e. if we take an average of all possible U (remember that U is a random variable) we
will get the desired θ. If E(U) 6= θ then the estimator is said to be biased (not giving the
desired result on average).

For example to show that K = X1+2X2+5X3

8 is an unbiased estimator of µ we merely
consider E(K) and keep whittling down as far as we can go (using S3 expectation and
variance algebra)

E(K) = E

(

X1 + 2X2 + 5X3

8

)

= E

(

X1

8
+

X2

4
+

5X3

8

)

=
1

8
E(X1) +

1

4
E(X2) +

5

8
E(X3)

=
1

8
µ+

1

4
µ+

5

8
µ = µ.

• For continuous random variables just remember that E(X) =
∫∞
−∞ xf(x) dx. For example

find the value of k which makes L = k(X1 +X2) an unbiased estimator of θ for

f(x) =

{

2
θ

(

1− x
θ

)

0 6 x 6 θ

0 otherwise

First calculate E(X) à la S2:

E(X) =

∫ ∞

−∞
xf(x) dx =

∫ θ

0
x
2

θ

(

1− x

θ

)

dx =

[

x2

θ
− 2x3

3θ2

]θ

0

=
θ

3
.

So for L to be unbiased we need E(L) = θ, so

E(L) = θ

E(k(X1 +X2) = θ

k(E(X1) + E(X2)) = θ

k(2× E(X)) = θ

k

(

2θ

3

)

= θ

k =
3

2
.

• Given two unbiased estimators the most efficient estimator (of the two) is the one where
Var(U) is smaller. A smaller variance is a ‘good thing’.
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• Sometimes you may need calculus to work out the most efficient estimator from an infinite
family. For example X1, X2 and X3 are three independent measurements of X.

S =
aX1 + 2X2 + 4X3

a+ 6
(with a 6= −6)

is suggested as an estimator for µ. Prove that S is unbiased whatever the value of a and
find the value of a which makes S most efficient. So

E(S) = E

(

aX1 + 2X2 + 4X3

a+ 6

)

=
1

a+ 6
E(aX1 + 2X2 + 4X3)

=
1

a+ 6
[aE(X1) + 2E(X2) + 4E(X3)]

=
1

a+ 6
[aµ+ 2µ + 4µ]

=
µ

a+ 6
(a+ 6) = µ.

So S is unbiased for all values of a. Now consider

Var(S) = Var

(

aX1 + 2X2 + 4X3

a+ 6

)

=
1

(a+ 6)2
Var(aX1 + 2X2 + 4X3)

=
1

(a+ 6)2
[a2Var(X1) + 4Var(X2) + 16Var(X3)]

=
a2 + 20

(a+ 6)2
σ2.

To minimise Var(S) we need d
da
Var(S) = 0. So

0 =
d

da

(

a2 + 20

(a+ 6)2
σ2

)

=
2a(a+ 6)2 − 2(a+ 6)(a2 + 20)

(a+ 6)4
σ2

So 0 = 2a(a+ 6)2 − 2(a+ 6)(a2 + 20)

0 = 2(a+ 6)[a(a+ 6)− (a2 + 20)]

0 = (a+ 6)(6a − 20).

So a = −6 or a = 10
3 , but a 6= −6 so a = 10

3 is the value of a that makes S most efficient2.

• Here is a tough type of problem that caught me out the first two (or three (or four (. . . )))
times I saw it. Slot away the method just in case. For example consider

f(x) =

{

2x
θ2

0 6 x 6 θ

0 otherwise

An estimate of θ is required and a suggestion is made to calculate 5L
4 where L is the

maximum of two independent observations of X (X1 and X2). Show that this estimator
is unbiased.

The thing to remember is that for L to be the maximum of X1 and X2, then X1 and X2

must both be less than or equal to L; i.e. we are going to calculate a cdf. So

P(L 6 l) = P(X1 6 l)× P(X2 6 l).

2I suppose we should consider the second derivative to show that this value of a minimises rather than

maximises the variance, but life’s too short. . .
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(This can be extended to three or more independent samplings of X.)

By sketching f(x) we can see that the probability that one observation is less than or

equal to l is given by a triangle in this case of area l2

θ2
(or by the integral

∫ l

0 f(x) dx for a

more general f(x)). So P(L 6 l) = P(X1 6 l)×P(X2 6 l) = l2

θ2
× l2

θ2
= l4

θ4
. Differentiating

wrt to l we find the pdf of l to be

f(l) =

{

4l3

θ4
0 6 l 6 θ

0 otherwise

Therefore we calculate E
(

5L
4

)

as follows:

E

(

5L

4

)

=
5

4
E(L)

=
5

4

∫ θ

0
l × 4l3

θ4
dl

=
5

4

[

4l5

5θ4

]θ

0

= θ.

Therefore 5L
4 is an unbiased estimator of θ. I will leave it as an exercise for the reader to

demonstrate that Var
(

5L
4

)

= θ2

24 .

Discrete Bivariate Distributions

• The discrete random variables you have met thus far have been in one variable only. For
example

x 2 3 5 7

P(X = x) 1
2

1
9

1
3

1
18

However we can have discrete bivariate distributions. For example

X

2 3 5

4 0 1
2

1
10

Y 5 1
5

3
20

1
20

From this we can see, say, P(X = 3, Y = 5) = 3
20 .

• The marginal distribution is what one obtains if one of the variables is ‘ignored’. In the
above example the marginal distribution of X can be written

x 2 3 5

P(X = x) 1
5

13
20

3
20

This can be added to the bivariate distribution thus:

X

2 3 5

4 0 1
2

1
10

Y 5 1
5

3
20

1
20

1
5

13
20

3
20
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E(X) and Var(X) can be calculated in the usual way obtaining E(X) = 31
10 and Var(X) =

79
100 (do it!). Similarly you can work out the marginal distribution of Y if you are so
inclined.

• The conditional distribution of a bivariate distribution can be calculated given that one of
the variables (X or Y ) has taken a specific value. For the above example the “distribution
of X conditional on Y = 4” is calculated by rewriting the 4 row with all the values divided
by P(Y = 4) = 3

5 .

x 2 3 5

P(X = x|Y = 4) 0 5
6

1
6

This is all from our friend P(A|B) = P(A∩B)
P(B) .

• A way to check whether X and Y are independent of each other in a bivariate distribution
is to check whether every entry in the distribution is the product of the two relevant
marginal probabilities. For example

X

1 2 3

1 1
3

2
9

1
9

2
3

Y 2 1
6

1
9

1
18

1
3

1
2

1
3

1
6

Here we see P(X = 2, Y = 1) = 2
9 is the same as P(X = 2)× P(Y = 1) = 1

3 × 2
3 = 2

9 . The
same is true for every entry in the table, so X and Y are independent. It only takes one
entry not to satisfy this to ensure X and Y are not independent.

• The covariance of a discrete bivariate distribution is defined

Cov(X,Y ) ≡ E((X − µX)(Y − µY )).

However this tends to be cumbersome to calculate so we use the equivalent formula

Cov(X,Y ) = E(XY )− µXµY .

The covariance can be thought of as the correlation coefficient (r from Stats 1) for two
probability distributions (sort of). The covariance can be both positive or negative (like
the correlation coefficient).

• To calculate the covariance, first create the marginal distributions:

X

1 3 4

2 1
3

1
4 0

Y 5 1
6

1
8

1
8

⇒

X

1 3 4

2 1
3

1
4 0 7

12
Y 5 1

6
1
8

1
8

5
12

1
2

3
8

1
8

Then use the marginal distributions to calculate µX and µY .

µX = E(X) =
∑

xp = 1× 1
2 + 3× 3

8 + 4× 1
8 = 17

8 .

µY = E(Y ) =
∑

yp = 2× 7
12 + 5× 5

12 = 13
4 .

Now we use this to calculate the covariance thus:

Cov(X,Y ) = E(XY )− µXµY

= (1× 2× 1

3
) + (1× 5× 1

6
) + (3× 2× 1

4
) + (3× 5× 1

8
) + (4× 2× 0) + (4 × 5× 1

8
)− 17

8
× 13

4

=
15

32
.
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• If X and Y are independent then Cov(X,Y ) = 0. However, if Cov(X,Y ) = 0 this does
not necessarily mean that X and Y are independent. But if Cov(X,Y ) 6= 0 then X and
Y cannot be independent.

• With an understanding of covariance we can write the relationship for Var(aX±bY ) when
X and Y are not independent:

Var(aX ± bY ) = a2Var(X) + b2Var(Y )± 2abCov(X,Y ).

Notice the extra term at the end of the formula we are used to from S3 for independent

X and Y .
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